1 Solve the equation $\frac{2 x}{x+1}-\frac{1}{x-1}=1$.

2 Express $\frac{x+1}{(2 x-1)}$ in partial fractions.

3 Express $\frac{3 x+2}{x\left(x^{2}+1\right)}$ in partial fractions.

4 Express $\frac{4}{x\left(x^{2}+4\right)}$ in partial fractions.

5 Solve the equation $\frac{2 x}{x-2}-\frac{4 x}{x+1}=3$.

6 (i) Express $\frac{x}{(1+x)(1-2 x)}$ in partial fractions.
(ii) Hence use binomial expansions to show that $\frac{x}{(1+x)(1-2 x)}=a x+b x^{2}+\ldots$, where a and b are
constants to be determined.

State the set of values of x for which the expansion is valid.

7 A skydiver drops from a helicopter. Before she opens her parachute, her speed $v \mathrm{~m} \mathrm{~s}^{-1}$ after time t seconds is modelled by the differential equation

$$
\frac{\mathrm{d} v}{\mathrm{~d} t}=10 \mathrm{e}^{-\frac{1}{2} t}
$$

When $t=0, v=0$.
(i) Find v in terms of t.
(ii) According to this model, what is the speed of the skydiver in the long term?

She opens her parachute when her speed is $10 \mathrm{~m} \mathrm{~s}^{-1}$. Her speed t seconds after this is $w \mathrm{~m} \mathrm{~s}^{-1}$, and is modelled by the differential equation

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}=-\frac{1}{2}(w-4)(w+5)
$$

(iii) Express $\frac{1}{(w-4)(w+5)}$ in partial fractions.
(iv) Using this result, show that $\frac{w-4}{w+5}=0.4 \mathrm{e}^{-4.5 t}$.
(v) According to this model, what is the speed of the skydiver in the long term?

